您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览3 | 下载0

目的 通过研究和搭建人工智能深度学习网络,实现多模态心脏磁共振(cardiac magnetic resonance,CMR)图像分割,并提升Dice系数.材料与方法 回顾性分析来自2019年多序列CMR分割挑战赛的公开数据集,它包含了45例患者平衡稳态自由进动(balanced-steady state free precession,bSSFP)模态,晚期钆增强(late gadolinium enhancement,LGE)模态与T2WI模态的CMR图像数据.本文构建了一种新的双流U型网络框架,实现bSSFP与LGE两种模态以及bSSFP与T2WI两种模态的CMR图像分割.在编码阶段,未配准各模态图像被交替地送入各自分支进行特征学习,所获取的特征图接着都流入共享层,实现多模态信息的交互补充,最终共享特征分开流出到各自分支进行解码输出.通过在45例患者的CMR图像数据集上进行五折交叉验证实验,分别对bSSFP与LGE模态、bSSFP与T2WI模态进行了分割,以Dice系数对提出的模型进行性能评估,Wilcoxon符号秩检验被用来检验模型差异性.结果 在bSSFP与LGE模态的分割实验中,本文方法在bSSFP模态的平均Dice系数相较于传统UNet模型和最新的Swin-Unet模型都有显著提升(P<0.001);在LGE模态的平均Dice系数较传统UNet模型(P<0.001)、Swin-Unet模型(P=0.001)、双流UNet(P=0.021)均有显著提升.在bSSFP与T2WI模态的分割实验中,本文方

作者:钟乔鑫;赵毅忠;张飞燕;陆雪松

来源:磁共振成像 2024 年 15卷 4期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:3 | 下载:0
作者:
钟乔鑫;赵毅忠;张飞燕;陆雪松
来源:
磁共振成像 2024 年 15卷 4期
标签:
心肌梗死 心肌病 心血管疾病 多源心脏图像分割 深度神经网络 模态交互学习 磁共振成像 myocardial infarction cardiomyopathy cardiovascular disease multi-source cardiac image segmentation deep neural network modality interaction learning magnetic resonance imaging
目的 通过研究和搭建人工智能深度学习网络,实现多模态心脏磁共振(cardiac magnetic resonance,CMR)图像分割,并提升Dice系数.材料与方法 回顾性分析来自2019年多序列CMR分割挑战赛的公开数据集,它包含了45例患者平衡稳态自由进动(balanced-steady state free precession,bSSFP)模态,晚期钆增强(late gadolinium enhancement,LGE)模态与T2WI模态的CMR图像数据.本文构建了一种新的双流U型网络框架,实现bSSFP与LGE两种模态以及bSSFP与T2WI两种模态的CMR图像分割.在编码阶段,未配准各模态图像被交替地送入各自分支进行特征学习,所获取的特征图接着都流入共享层,实现多模态信息的交互补充,最终共享特征分开流出到各自分支进行解码输出.通过在45例患者的CMR图像数据集上进行五折交叉验证实验,分别对bSSFP与LGE模态、bSSFP与T2WI模态进行了分割,以Dice系数对提出的模型进行性能评估,Wilcoxon符号秩检验被用来检验模型差异性.结果 在bSSFP与LGE模态的分割实验中,本文方法在bSSFP模态的平均Dice系数相较于传统UNet模型和最新的Swin-Unet模型都有显著提升(P<0.001);在LGE模态的平均Dice系数较传统UNet模型(P<0.001)、Swin-Unet模型(P=0.001)、双流UNet(P=0.021)均有显著提升.在bSSFP与T2WI模态的分割实验中,本文方