您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览181 | 下载0

Thiobacillus ferrooxidans was employed in the biomachining process of metal copper(Cuo). The bacteria growth and the changes of Fe3+ concentration during machining processes have been studied. Biomachining and chemical machining have been compared.The results showed that the concentrations of bacteria and Fe3+ determine the speed of machining copper. The biomachining is more fast that chemical maching because bacteria are able to regenerate Fe3+ oxidizing copper. It was also found that the Cu2 + produced from the machining processes inhibit the growth of bacteria. Cu2+ has to be removed.

作者:李雅芹;张德远;吴依陶

来源:微生物学报 2000 年 40卷 3期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:181 | 下载:0
作者:
李雅芹;张德远;吴依陶
来源:
微生物学报 2000 年 40卷 3期
标签:
氧化亚铁硫杆菌 生物加工 金属铜
Thiobacillus ferrooxidans was employed in the biomachining process of metal copper(Cuo). The bacteria growth and the changes of Fe3+ concentration during machining processes have been studied. Biomachining and chemical machining have been compared.The results showed that the concentrations of bacteria and Fe3+ determine the speed of machining copper. The biomachining is more fast that chemical maching because bacteria are able to regenerate Fe3+ oxidizing copper. It was also found that the Cu2 + produced from the machining processes inhibit the growth of bacteria. Cu2+ has to be removed.