您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览198 | 下载18

背景:磁性微粒作为一种磁性载体在固定化酶、免疫检测、靶向载药治疗及细胞分离等生物医学领域得到了广泛的应用.目的:制备分散稳定性好,相对磁性强的纳米级Fe3O4微粒.方法:以氯化亚铁、氯化铁、氢氧化钠为主要原料,采用化学共沉淀法合成Fe3O4磁性粒子.结果与结论:用正交设计法优化了Fe3O4微粒的合成工艺条件,得到制备Fe3O4粒子的最佳实验条件为Fe2+/Fe3+的物质的量之比为2∶1、共沉淀时的pH值为11、熟化温度为90 ℃、表面活性剂聚乙二醇的用量为40 mL,此时制得的Fe3O4粒子粒径最小,为78 nm,Fe3O4溶液的分散稳定性最好,相对磁性最强.从Fe3O4的扫描电镜图可以看出,Fe3O4微粒晶体颗粒为纳米级.

作者:李黎;马力

来源:中国组织工程研究与临床康复 2011 年 15卷 34期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:198 | 下载:18
作者:
李黎;马力
来源:
中国组织工程研究与临床康复 2011 年 15卷 34期
标签:
磁性微粒 Fe3O4 生物材料 磁流体 纳米生物材料
背景:磁性微粒作为一种磁性载体在固定化酶、免疫检测、靶向载药治疗及细胞分离等生物医学领域得到了广泛的应用.目的:制备分散稳定性好,相对磁性强的纳米级Fe3O4微粒.方法:以氯化亚铁、氯化铁、氢氧化钠为主要原料,采用化学共沉淀法合成Fe3O4磁性粒子.结果与结论:用正交设计法优化了Fe3O4微粒的合成工艺条件,得到制备Fe3O4粒子的最佳实验条件为Fe2+/Fe3+的物质的量之比为2∶1、共沉淀时的pH值为11、熟化温度为90 ℃、表面活性剂聚乙二醇的用量为40 mL,此时制得的Fe3O4粒子粒径最小,为78 nm,Fe3O4溶液的分散稳定性最好,相对磁性最强.从Fe3O4的扫描电镜图可以看出,Fe3O4微粒晶体颗粒为纳米级.