您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览431 | 下载1170

目的:探讨CT影像组学模型对良恶性甲状腺结节的鉴别诊断价值。方法:回顾性分析2017年5月至2018年8月间南京医科大学附属淮安第一manbet官网登录 经病理证实的179例甲状腺结节患者的临床和影像资料。良性结节89例,恶性结节90例。患者术前均行甲状腺结节CT平扫和增强扫描。采用分层随机抽样方法将患者按照8∶2的比例分为训练组(143例)与测试组(36例),采用A.K软件基于术前CT图像提取378个影像组学特征,后采用Spearman相关分析与最小绝对收缩和选择算子回归分析进行特征筛选与模型构建,在训练组与测试组中应用受试者操作特征(ROC)曲线对模型进行验证,评价影像组学特征预测良恶性甲状腺结节的效能。结果:经过特征筛选,16个影像组学特征用于构建甲状腺结节良恶性鉴别模型。训练组中预测模型的ROC曲线下面积(AUC)为0.92(95

作者:孔丹;张建东;单文莉;段绍峰;郭莉莉

来源:中华放射学杂志 2020 年 54卷 3期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:431 | 下载:1170
作者:
孔丹;张建东;单文莉;段绍峰;郭莉莉
来源:
中华放射学杂志 2020 年 54卷 3期
标签:
体层摄影术,X线计算机 甲状腺结节 诊断,鉴别 影像组学 Tomography, X-Ray computed Thyroid nodule Diagnosis, differential Radiomics
目的:探讨CT影像组学模型对良恶性甲状腺结节的鉴别诊断价值。方法:回顾性分析2017年5月至2018年8月间南京医科大学附属淮安第一manbet官网登录 经病理证实的179例甲状腺结节患者的临床和影像资料。良性结节89例,恶性结节90例。患者术前均行甲状腺结节CT平扫和增强扫描。采用分层随机抽样方法将患者按照8∶2的比例分为训练组(143例)与测试组(36例),采用A.K软件基于术前CT图像提取378个影像组学特征,后采用Spearman相关分析与最小绝对收缩和选择算子回归分析进行特征筛选与模型构建,在训练组与测试组中应用受试者操作特征(ROC)曲线对模型进行验证,评价影像组学特征预测良恶性甲状腺结节的效能。结果:经过特征筛选,16个影像组学特征用于构建甲状腺结节良恶性鉴别模型。训练组中预测模型的ROC曲线下面积(AUC)为0.92(95