您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0 | 下载0

目的:探讨CT组学预测乳腺癌患者同时性肺结节在乳腺癌治疗后转归的可行性。方法:回顾性收集2013年1月1日至2016年11月31日复旦大学附属肿瘤manbet官网登录 经病理证实为乳腺癌且胸部CT发现肺结节(>5 mm,数量≤5个)的女性患者。共入组80例患者,中位年龄52(45, 61)岁,肺结节中位大小6.0(5.5, 7.2) mm。根据CT随访结果将肺结节转归分成稳定组(随访时间超过2年)及变化组(进展组和改善组),其中稳定组54例,变化组26例(改善组13例,进展组13例)。采用Python软件基于CT图像提取105个组学特征,根据逐步回归方法进行特征降维,最后利用五折交叉验证及常用的分类器模型,预测肺结节在乳腺癌标准治疗后的转归,采用受试者操作特征曲线下面积(AUC)评估模型的诊断效能。结果:区分稳定组及变化组肺结节时,组学特征筛选降维后择出3种组学特征,利用23种分类器建立模型,线性判别分析模型诊断效能最佳,此模型预测肺结节转归的特异度、灵敏度、准确率及AUC分别为0.980、0.460、0.813及0.770。在进一步区分进展组与改善组肺结节时,择取一种组学特征建立模型,其中粗高斯支持向量机模型诊断效能最佳,其预测变化组肺结节转归的特异度、灵敏度、准确率及AUC分别为0.540、0.920、0.713及0.880。结论:CT组学在预测乳腺

作者:黄琰;王哲;肖勤;孙轶群;李芹;王鹤;顾雅佳

来源:中华放射学杂志 2020 年 54卷 5期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0 | 下载:0
作者:
黄琰;王哲;肖勤;孙轶群;李芹;王鹤;顾雅佳
来源:
中华放射学杂志 2020 年 54卷 5期
标签:
乳腺肿瘤 肺结节 体层摄影术,X线计算机 Breast neoplasms Pulmonary nodules Tomography, X-ray computed
目的:探讨CT组学预测乳腺癌患者同时性肺结节在乳腺癌治疗后转归的可行性。方法:回顾性收集2013年1月1日至2016年11月31日复旦大学附属肿瘤manbet官网登录 经病理证实为乳腺癌且胸部CT发现肺结节(>5 mm,数量≤5个)的女性患者。共入组80例患者,中位年龄52(45, 61)岁,肺结节中位大小6.0(5.5, 7.2) mm。根据CT随访结果将肺结节转归分成稳定组(随访时间超过2年)及变化组(进展组和改善组),其中稳定组54例,变化组26例(改善组13例,进展组13例)。采用Python软件基于CT图像提取105个组学特征,根据逐步回归方法进行特征降维,最后利用五折交叉验证及常用的分类器模型,预测肺结节在乳腺癌标准治疗后的转归,采用受试者操作特征曲线下面积(AUC)评估模型的诊断效能。结果:区分稳定组及变化组肺结节时,组学特征筛选降维后择出3种组学特征,利用23种分类器建立模型,线性判别分析模型诊断效能最佳,此模型预测肺结节转归的特异度、灵敏度、准确率及AUC分别为0.980、0.460、0.813及0.770。在进一步区分进展组与改善组肺结节时,择取一种组学特征建立模型,其中粗高斯支持向量机模型诊断效能最佳,其预测变化组肺结节转归的特异度、灵敏度、准确率及AUC分别为0.540、0.920、0.713及0.880。结论:CT组学在预测乳腺