您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览808 | 下载202

近十年来,人工智能技术快速发展并逐渐由学术界走向产业界,其在医疗领域的应用也逐渐深入。受技术和伦理的局限,人工智能在医疗领域更多处于辅助决策的地位。抑郁症作为一种常见的精神障碍,其发病率在全球日益增长,如何利用以深度学习为代表的人工智能技术手段实现对抑郁症的筛查和诊断,促进抑郁症早发现和及时治疗,具有十分重要的意义。我们对近几年以人工智能为手段的抑郁症辅助诊断技术进行了文献调研和总结,主要从人脸表情、语音语调、文本语义、姿态行为及多模态数据融合5个方面入手,介绍人工智能在面向患者日常行为分析的抑郁症辅助诊断方面的研究进展。

作者:马思梦;曹勇;王培琳;阳俊;刘忠纯

来源:中华精神科杂志 2020 年 53卷 5期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:808 | 下载:202
作者:
马思梦;曹勇;王培琳;阳俊;刘忠纯
来源:
中华精神科杂志 2020 年 53卷 5期
标签:
抑郁症 深度学习 计算机视觉 行为分析 多模态数据融合 Depressive disorder Deep learning Computer vision Behavioral analysis Multimodal data fusion
近十年来,人工智能技术快速发展并逐渐由学术界走向产业界,其在医疗领域的应用也逐渐深入。受技术和伦理的局限,人工智能在医疗领域更多处于辅助决策的地位。抑郁症作为一种常见的精神障碍,其发病率在全球日益增长,如何利用以深度学习为代表的人工智能技术手段实现对抑郁症的筛查和诊断,促进抑郁症早发现和及时治疗,具有十分重要的意义。我们对近几年以人工智能为手段的抑郁症辅助诊断技术进行了文献调研和总结,主要从人脸表情、语音语调、文本语义、姿态行为及多模态数据融合5个方面入手,介绍人工智能在面向患者日常行为分析的抑郁症辅助诊断方面的研究进展。