目的:基于深度学习方法开发眼前节相干光层析成像术(AS-OCT)图像分析系统,并评价其对常见角膜病变及特征的自动识别与定位效果。方法:收集2011年1月至2019年8月于青岛眼科manbet官网登录
就诊的患者4 026例(5 617只眼),男性1 977例,女性2 049例,年龄(45±23)岁,将其AS-OCT图像作为训练集,由临床ManBetX万博官网地址下载
人工标注角膜上皮缺损、角膜上皮增厚、角膜变薄等16种特征的类型和位置,以及角膜上皮层和基质层的组织分层,用于训练基于深度卷积神经网络算法构建的AS-OCT图像特征识别模型和角膜分层模型。再收集1 709幅患眼AS-OCT图像作为验证集,由模型对特征和角膜分层情况进行识别,并与人工标注结果相比,通过准确度、灵敏度和特异度来评价角膜特征检测模型,采用模型标注区域与人工标注区域的重合率(Dice系数)来评价角膜分层模型。结果:5 617幅训练集人工对角膜特征的标注结果(训练数量)为角膜上皮缺损1 472例、角膜上皮增厚2 416例、角膜变薄2 001例、角膜前凸780例、角膜增厚2 064例、上皮下水泡358例、上皮下混浊486例、角膜溃疡1 010例、基质混浊3 635例、后弹力层褶皱1 060例、后弹力层脱离137例、角膜后沉积物665例、角膜穿孔176例、角膜异物127例、LKP术后299例、PKP术后234例。验证集中1 709幅图像中
作者:李东芳;董燕玲;谢森;郭振;李素霞;郭晏;吕彬;谢立信
来源:中华眼科杂志 2021 年 57卷 6期